
www.elsevier.com/locate/ijhff

International Journal of Heat and Fluid Flow 28 (2007) 83–94
A model for the residence time distribution of bubble-train flow in a
square mini-channel based on direct numerical simulation results

Martin Wörner *, Bradut Ghidersa, Alexandru Onea

Forschungszentrum Karlsruhe, Institut für Reaktorsicherheit, Postfach 3640, 76021 Karlsruhe, Germany

Accepted 28 April 2006
Available online 14 August 2006
Abstract

This paper presents an original method for evaluating the liquid phase residence time distribution in bubble-train flow using data from
direct numerical simulations (DNS). The method is a particle method and relies on the uniform introduction of virtual particles in the
volume occupied by the liquid phase within a single flow unit cell. The residence time distribution is obtained by statistical evaluation of
the time needed by any particle to travel an axial distance equivalent to the length of the flow unit cell. Residence time curves are eval-
uated from DNS data of bubble-train flow in a square mini-channel for different lengths of the flow unit cell. The curves obtained are well
fitted by an exponential relationship, which has been developed on basis of a two-tanks-in-series compartment model, where the first tank
is a plug flow reactor and the second is a continuous stirred tank reactor.
� 2006 Elsevier Inc. All rights reserved.
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1. Introduction

Bubble-train flow (BTF) is a common flow pattern for
gas–liquid flows in narrow channels. It consists of a regular
sequence of bubbles of identical shape, which fill almost the
entire channel cross-section and are often called Taylor
bubbles. The individual bubbles are separated by liquid
slugs and move with the same axial velocity. Therefore,
bubble-train flow or Taylor flow is fully described by a sin-
gle flow unit cell, which consists of one bubble and the
liquid slug separating it from the trailing bubble. BTF is
of considerable technical relevance, e.g. for monolithic
reactors (Boger et al., 2004; Kreutzer et al., 2005a,b) and
for miniaturised multiphase reactors (Burns and Ramshaw,
2001; Hessel et al., 2004, 2005).

An important characteristic of any chemical reactor is
its residence time distribution (RTD), since the RTD pro-
vides information about the flow and mixing behaviour
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of reaction components. In practice, the residence time dis-
tribution is often measured by a stimulus–response tech-
nique, where a specific quantity of tracer (e.g. fluorescent
substance, radionuclide, solution of salt, etc.) is introduced
at the system inlet as a short duration pulse or a step func-
tion and where the time variation of the tracer concentra-
tion at the outlet is recorded.

The tracer particles injected at the inlet are assumed to
follow the same paths through the system as did the origi-
nal fluid particles they replaced (Nauman, 1981). Thus, the
tracer particles will have the same distribution of residence
times as the original fluid particles. By recording the times
when particles leave, a histogram can be constructed
which, with a large sampling size, will converge to the dif-
ferential residence time distribution function, E(t). The
probability that a particle had a residence time less than t

is then given by the cumulative residence time distribution
function

F ðtÞ ¼
Z t

0

Eðt0Þdt0 ð1Þ
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Nomenclature

Bo Bodenstein number
Ca capillary number
DB bubble diameter
E residence time distribution (RTD)
Euref reference Euler number, Euref ¼ jDpLref

j=
ðqLU 2

refÞ
F cumulative residence time distribution function
f liquid volumetric fraction in a mesh cell
JG superficial velocity of gas phase, JG = eUG

JL superficial velocity of liquid phase, JL = (1 �
e)UL

J total superficial velocity, J = JG + JL

LB bubble length
Lref reference length scale, Lref = W = 0.002 m
Luc length of unit cell
Np number of particles
Nt number of time steps
nLref

number of particles per reference length
DpLref

axial pressure drop per reference length
Q volumetric flow rate
ReB bubble Reynolds number
t time
tB bubble breakthrough time, tB � Lref=U B

UB bubble velocity
UG mean velocity of gas phase, here UG = UB

UL mean velocity of liquid phase
Uref reference velocity scale, Uref = 0.0264 m/s
V ratio between bubble velocity and superficial

velocity, V � UB/J

VPFR, VCSTR volume of reactor
v velocity field in fixed frame of reference
W channel width, W = 0.002 m
w velocity field in frame of reference moving with

the bubble
x = (x,y,z)T Cartesian position vector in fixed frame of

reference
Z non-dimensional relative bubble velocity,

Z � (UB � J)/UB

z Cartesian position vector in frame of reference
moving with bubble

Greek symbols

e volume fraction of gas in the unit cell
l dynamic viscosity
h dimensionless time, h � t/s
q density
r coefficient of surface tension
s mean hydrodynamic residence time

Subscripts

B bubble
CSTR continuous stirred tank reactor
G gas phase
L liquid phase
PFR plug flow reactor
ref reference value
uc unit cell
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The extension of the above measurement principle from
single-phase flow to gas–liquid two phase flow presents
no special difficulties (Nauman, 1981). The main difference
is that the system has now usually two inlets (one for the
gas phase and one for the liquid phase), while there is still
one common outlet. To measure the residence time distri-
bution of the liquid phase, the tracer pulse is injected at
the liquid inlet only. For bubble-train flow, a measurement
of the residence time distribution of the gas phase is not of
interest, since the RTD is very narrow and its mean value
can easily be computed from the travelling distance and
the bubble velocity.

The stimulus–response measurement technique is well
suited for macro-reactors, where the reactor volume is
much larger than the volume of the tracer measuring unit.
However, for micro-reactors the reactor volume is usually
smaller than the volume of the measuring unit. This means
that the residence time response of the tracer may already
be influenced by the measuring construction itself (Günther
et al., 2004b). Measurements of liquid phase RTD for two-
phase flow through narrow channels are reported by Thul-
asidas et al. (1999) for bubble-train flow in single straight
channels, by Patrick et al. (1995) for a monolith froth reac-
tor, by Heibel et al. (2005) for film flow in a monolith reac-
tor, by Yawalkar et al. (2005) and Kreutzer et al. (2005a)
for bubble-train flow in a monolith reactor, and by Gün-
ther et al. (2004a) and Trachsel et al. (2005) for bubble-
train flow in micro-fluidic channel networks of rectangular
cross-section. The latter authors showed a narrow resi-
dence time distribution for bubble-train flow as compared
to single-phase flow.

An alternative way to determine the RTD is by means of
computational fluid dynamics (CFD). There exist, in prin-
ciple, two options to determine the residence time distribu-
tion from CFD methods (Thyn and Zitny, 2004). The first
one is to numerically simulate the stimulus–response exper-
iment, i.e. setting a short concentration pulse at the inlet of
the computational domain, computing the unsteady con-
centration field of the tracer within the computational
domain and evaluating it at the outlet. This approach has
been used in a modified form by Salman et al. (2005) to
determine the reactor residence time for Taylor flow in a
circular micro-channel from the residence time distribution
of a single unit cell by using a convolution procedure. The
second possibility is the particle tracking method. Here,
virtual particles are released at the inlet and their trajecto-
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ries are computed from the known velocity field of the
CFD calculation (see e.g. Castelain et al., 2000). A notable
difference between the two methods is that in the particle
method only convective properties of the flow are moni-
tored, while by evaluation of the unsteady concentration
field the diffusive transport is also taken into account.
The relative importance of convective and diffusive trans-
port is characterised by the Bodenstein number. For bub-
ble-train flow, it can be defined as Bo = UBdh/Dtracer,
where UB is the bubble velocity, dh is the hydraulic diame-
ter of the channel and Dtracer is the molecular diffusion
coefficient of the tracer in the liquid phase. For a particle
method, no diffusion of the tracer is taken into account.
The RTD obtained by a particle method is therefore repre-
sentative for an infinite value of the Bodenstein number.

To predict the residence time distribution for Taylor
flow, Salman et al. (2004) developed a numerical model
valid for low values of the Bodenstein number. This model
assumes well-mixed liquid slugs of uniform concentration
and liquid films around the bubble that can be adequately
described by a one-dimensional convection–diffusion equa-
tion. For large values of the Bodenstein number (Bo > 10)
the model can be simplified to yield an analytical solution
which corresponds to the representation of a unit cell by
a tank-in-series model, consisting of a plug flow reactor
(PFR) and a continuous stirred tank reactor (CSTR).

An important issue for measurement of the RTD or its
computation by CFD is the introduction of the tracer at
the inlet and its detection at the outlet, because this may
strongly influence the obtained residence time distribution
(Levenspiel and Turner, 1970; Levenspiel et al., 1970; Lev-
enspiel, 1999). There are essentially two different concepts,
namely the flux and planar introduction and measurement,
respectively. Both approaches lead to different response
curves which may, for laminar flow in a pipe or plane chan-
nel, be transformed into each other, see Section 3.2.1.
However, only the flux–flux method yields the proper
RTD for reactor purposes (Levenspiel, 1999).

In this paper we present an original CFD-based method
for evaluation of the residence time distribution of the con-
tinuous phase in bubble-train flow. Our method is a parti-
cle method and relies on the known bubble shape and
velocity field within a unit cell, which are assumed to be
available from direct numerical simulation (DNS). Particle
methods are usually based on the computed steady velocity
field. For BTF the velocity field is unsteady in the fixed
frame of reference, for which the RTD has to be computed.
It is, however, steady in the frame of reference moving with
the bubble. In our method we take advantage of this fact
and apply an appropriate transformation between the
two frames of reference. Because the concept of planar
introduction is not suited for BTF, we extend it to a volu-
metric introduction, where virtual particles are introduced
in all mesh cells within the flow domain that are entirely
filled with liquid. For each particle we determine the time
the particle needs to travel an axial distance equal to the
unit cell length. By appropriate weighting and normalisa-
tion of the residence times of all particles, the residence
time distribution is obtained.

The remainder of this paper is organised as follows. In
Section 2 we present direct numerical simulation results of
co-current upward bubble-train flow of air bubbles through
silicon oil in a square vertical channel of 2 mm · 2 mm
cross-section. In Section 3 we introduce our original particle
method for evaluation of the RTD in bubble-train flow. In
Section 4 we present results for the liquid phase residence
time distribution in bubble-train flow and develop a model
for the RTD obtained. Finally, we give conclusions and
outlook in Section 5.

2. Direct numerical simulation of bubble-train flow

In this section we first give a short overview on the
numerical method and the computer code used to perform
the direct numerical simulations of bubble-train flow. We
then give the physical and numerical parameters of the sim-
ulations and provide a verification and discussion of the
DNS results.

2.1. Numerical method

The direct numerical simulations are performed with the
in-house computer code TURBIT-VOF, which solves the
single-field Navier–Stokes equations with surface tension
term for two incompressible immiscible fluids under
assumption of constant fluid properties (i.e. density, viscos-
ity, surface tension). The single-field formulation automat-
ically accounts for the proper momentum jump conditions
across the gas–liquid interface. The governing equations
are written in non-dimensional form, see Ghidersa et al.
(2004). For normalisation, a reference length scale Lref

and reference velocity scale Uref are used, which need to
be specified. The solution strategy is based on a projection
method, where the resulting Poisson equation for the pres-
sure is solved by a conjugate gradient solver. Time integra-
tion of the single field Navier–Stokes equation is done by
an explicit third-order Runge–Kutta method. Discretisa-
tion in space is based on a finite volume method, where a
regular Cartesian staggered grid is used. All derivatives
in space are approximated by second-order central differ-
ences.

For computing the evolution of the deformable interface
which separates the two immiscible fluids, the volume-of-
fluid (VOF) method is used. In any mesh cell that instanta-
neously contains both phases, the interface is locally
approximated by a plane. The orientation and location of
the plane is reconstructed from the discrete distribution
of the volumetric fraction f of the continuous fluid. Note
that – for a certain instant in time – we have f = 1 for mesh
cells entirely filled with liquid, f = 0 for mesh cells entirely
filled with gas, and 0 < f < 1 for mesh cells that contain
both phases. The evolution of f is governed by an advec-
tion equation, which expresses the mass conservation of
the continuous phase. To avoid any smearing of the inter-
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face, this equation is not solved by a difference scheme.
Instead, the flux of f across the faces of any interface mesh
cell is calculated in a geometrical manner, depending on the
location and orientation of the plane representing the inter-
face. For further details about the numerical method we
refer to Sabisch et al. (2001).

2.2. Simulation parameters

We now give a short overview on the simulations of
bubble-train flow that we will use to analyse the RTD.
The concept of the simulations is essentially the same as
in a previous paper (Ghidersa et al., 2004). We consider
one flow unit cell only and use periodic boundary condi-
tions in vertical axial direction (y); see Fig. 1 for a sketch
of the computational domain and the co-ordinate system.
The use of periodic boundary conditions in axial direction
requires a special treatment of the pressure term. For this
purpose a ‘‘reduced pressure’’ is defined, see Ghidersa
et al. (2004). This reduced pressure is periodic because it
does not involve the hydrostatic contribution and that of
the linear axial pressure drop. As a result of this pressure
decomposition, the buoyancy force and the axial pressure
gradient appear as source terms in the Navier–Stokes equa-
tion. The simulations aim to reproduce the conditions of an
experiment by Thulasidas et al. (1995), where the co-cur-
rent upward flow of air bubbles in silicon oil of various vis-
cosities in a square vertical channel with a cross-section of
2 mm · 2 mm is investigated. This flow configuration was
recently investigated numerically by Taha and Cui (2006)
using the VOF method as implemented in the commercial
Fig. 1. Sketch of computational domain and co-ordinate system. The
bubble shape corresponds to the initial conditions of case E.
CFD code FLUENT. The latter authors did, however,
not consider bubble-train flow, but computed the flow of
a single Taylor bubble and used inflow and outflow bound-
ary conditions.

In Ghidersa et al. (2004) we presented simulations with a
cubic flow unit cell for silicon oil of two different viscosities,
which result in different values of the capillary number
Ca � lLUB/r, namely Ca � 0.04 and Ca � 0.2. The capil-
lary number is the relevant non-dimensional group for
two-phase flow in narrow channels, as it represents the
ratio of the two dominant forces, namely viscous forces
and surface tension. The influence of the capillary number
is discussed in Ghidersa et al. (2004) and Taha and Cui
(2006). In the present paper, we consider only the more vis-
cous case, i.e. that one with higher value of Ca, where
lL = 0.048 Pa s and qL = 957 kg/m3. While these values
for the liquid density and liquid viscosity and the value
for the coefficient of surface tension r = 0.02218 N/m cor-
respond to the experiment of Thulasidas et al. (1995), we
increased in Ghidersa et al. (2004) the gas density and
gas viscosity by a factor of 10 to improve the computa-
tional efficiency. So we used qG = 11.7 kg/m3 and lG =
1.84 · 10�4 Pa s, which results in a liquid-to-gas density
ratio of about 81 and a liquid-to-gas viscosity ratio of
about 260. To investigate the effect of this artificial increase
of qG and lG we present, for comparison, in this paper one
simulation for the real air properties, namely qG = 1.17 kg/
m3 and lG = 1.84 · 10�5 Pa s. In addition, a grid refine-
ment study is performed for the case with increased gas
density and viscosity to assess the influence of the mesh
size.

As initial condition we place (for the simulations with a
cubic unit cell only) a spherical bubble in the centre of the
computational domain and start the simulations from fluid
at rest. The diameter of the bubble is chosen so that the gas
volumetric fraction in the unit cell e is about 33%. In this
paper we use for all simulations as reference length scale
Lref = 0.002 m (i.e. the width of the square channel in the
experiment of Thulasidas et al. (1995)) and as reference
velocity scale Uref = 0.0264 m/s. The reference time scale
then becomes tref = Lref/Uref = 0.0757 s. The driving axial
pressure drop corresponds to a reference Euler number
Euref � jDpLref

j=ðqLU 2
refÞ ¼ 27, where jDpLref

j is the axial
pressure drop per reference length. In Table 1 we list the
time step width and number of time steps computed. As
it can be seen, the time step for case A1 is ten times smaller
than for case A2 with increased gas density. In Fig. 2 we
show the temporal evolution of the bubble velocity and
the mean velocity of the liquid phase. We see that the
curves for cases A1, A2 and A3 show only very small dif-
ferences. Fig. 3 shows the temporal evolution of the bubble
dimensions in the two wall-normal directions x and z.
These bubble dimensions are computed as follows. For
each mesh cell that contains both phases (0 < f < 1) the
centroid of the plane representing the interface is com-
puted. The centroids of neighbouring mesh cells are then
connected to form triangles or quadrangles. This yields



Table 1
Parameters of simulations performed to investigate the influence of gas physical properties and grid size for a cubic unit cell (Luc = W)

Case qG [kg/m3] lG [mPa s] Grid Dt/tref Nt tmax/tref

A1 1.17 0.0184 48 · 48 · 48 2.5 · 10�6 300000 0.75
A2 11.7 0.184 48 · 48 · 48 2.5 · 10�5 40000 1.0
A3 11.7 0.184 64 · 64 · 64 1 · 10�5 100000 1.0

0. 0 0.2 0. 4 0.6 0. 8 1.0
0

1

2

3

4

 A1 : grid 48x48x48, ρ
G
= 1. 17 kg/ m3

 A2 : grid 48x48x48, ρ
G
= 11 .7  kg/ m3

 A3 : grid 64x64x64, ρ
G
= 11 .7  kg/ m3

U
L
 / U

ref

U
B

/U
re

f, 
U

L/
U

re
f [

-]

U
B
 / U

ref

t / tref [- ]

Fig. 2. Temporal evolution of non-dimensional bubble velocity and mean
liquid velocity for cases A1, A2 and A3.
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the closed bubble surface as shown in Figs. 1 and 5. By this
procedure it is possible to determine the bubble dimension
with a resolution that is smaller than the actual mesh
width. As becomes evident from Fig. 3, the differences
between the bubble dimensions in both directions and
between the three cases are very small.

At this point it is appropriate to mention some impor-
tant restrictions of the present concept for simulation of
BTF. Due to the use of periodic boundary conditions in
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  A1: x-direction
  A1: z-direction
  A2: x-direction
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  A3: x-direction
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1/ 48
1/ 64

Fig. 3. Temporal evolution of non-dimensional bubble dimensions in wall
normal directions x and z for cases A1, A2 and A3. The arrows indicate
the mesh cell size for cases A1 and A2 (1/48) and A3 (1/64).
axial direction, the length of the unit cell, the axial pressure
drop per reference length and the volumetric gas content in
the unit cell are input parameters of the simulations, while
the gas and liquid flow rates are results, i.e. output. This is
in contrast to experiments, where usually the gas and liquid
flow rates are specified and the length of the unit cell, the
axial pressure drop and the volumetric gas content in the
unit cell adjust accordingly. For a comparison with exper-
iments it is therefore important to study the influence of the
length of the flow unit cell, Luc. A preliminary study for five
different values of Luc in the range 1 6 Luc/Lref 6 2 and for
the physical parameters mentioned above has been per-
formed by Wörner et al. (2004). Here, this study is contin-
ued and refined. Justified by the present results for the
influence of the gas properties and the grid size, in all these
runs a uniform isotropic grid with a resolution of 48 · 48
mesh cells per channel cross-section is used, and the phys-
ical properties of the gas phase are set to qG = 11.7 kg/m3

and lG = 1.84 · 10�4 Pa s. Beside the change of Luc and
that of the initial bubble shape from spherical to elongated
(see Fig. 1 for the initial bubble shape of case E and Wör-
ner et al. (2004) for its mathematical description) all the
other parameters of the simulations including e and Euref

are identical to run A2.

2.3. Verification

Table 2 lists the different values of Luc and the corre-
sponding simulation results. These include the bubble
velocity UB (which is equal to the mean gas velocity UG),
the mean liquid velocity UL, the bubble diameter DB, and
the bubble length LB. In all simulations the bubble shape
is axisymmetric and, therefore, any axial cross-section
through the bubble results in a circle. The bubble diameter
DB is defined as the largest diameter of this circle for all
axial cross-sections of the bubble. From Table 2 one can
see that with increasing length of the unit cell the bubble
velocity and the mean liquid velocity both increase for a
given value of Euref, respectively jDpLref

j. Thus, for the same
gas content within the unit cell and for the same driving
axial pressure gradient larger bubble velocities are reached
in longer unit cells. The bubble Reynolds number
ReB � qLWUB/lL is in the range 3.8–4.8, therefore the flow
is laminar. Also given in Table 2 are the capillary number
Ca and the ratio of bubble velocity to total superficial
velocity V � UB/J, where J � eUG + (1 � e)UL, and the rel-
ative bubble velocity Z � (UB � J)/UB. The capillary num-
ber is proportional to the bubble velocity therefore Ca also
increases with increasing length of the unit cell.



Table 2
Results for simulations with different unit cell length

Case Luc/W Grid UB/Uref UL/Uref Ca DB/W LB/W V Z

A1 1.0 48 · 48 · 48 3.66 1.21 0.209 0.811 0.928 1.808 0.447
A2 1.0 48 · 48 · 48 3.66 1.20 0.209 0.809 0.934 1.815 0.449
A3 1.0 64 · 64 · 64 3.64 1.20 0.208 0.810 0.935 1.812 0.448
B 1.125 48 · 54 · 48 3.61 1.26 0.206 0.831 0.993 1.770 0.435
C 1.25 48 · 60 · 48 3.62 1.29 0.207 0.842 1.054 1.756 0.430
D 1.375 48 · 66 · 48 3.76 1.33 0.215 0.847 1.138 1.755 0.430
E 1.5 48 · 72 · 48 3.86 1.37 0.220 0.845 1.208 1.761 0.432
F 1.625 48 · 78 · 48 4.10 1.41 0.234 0.849 1.301 1.778 0.437
G 1.75 48 · 84 · 48 4.20 1.44 0.240 0.850 1.370 1.786 0.440
H 2.0 48 · 96 · 48 4.54 1.51 0.259 0.848 1.533 1.809 0.447

Experimental data of Thulasidas et al. (1995)
0.21–0.26 0.82–0.86 – 1.68–1.84 0.435–0.475
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For verification we use experimental results of Thulasi-
das et al. (1995) for DB/W, V and Z, which are given in
graphical form as function of the capillary number. Thu-
lasidas et al. (1995) do not give explicit values for the bubble
length, but their bubbles are always elongated so that the
ratio LB/W is clearly larger than 1. They give, however, val-
ues for the ratio of bubble length to unit cell length LB/Luc,
which is in the range 0.6–0.7 and thus is smaller than in our
simulations, where it ranges from 0.93 in case A to 0.77 in
case H. The experimental values of DB/W, V and Z within
the range of Ca of our simulations are listed in the last line
of Table 2. We see that the computed values do well agree
with the experimental ones with the only exception of cases
A1, A2 and A3, where the bubble diameter is clearly too
small. The plot of DB/W, V and Z as function of the cap-
illary number in Fig. 4 shows that one can identify essen-
tially two regimes with different trends. For cases A, B
and C the capillary number is almost the same and we find,
for increasing Luc, an increase of DB and a decrease of V

and Z. For cases D, E, F, G and H the capillary number
increases with increase of Luc because the bubble velocity
increases. While the bubble diameter is almost the same
in all these cases, V and Z increase with increasing Luc

and show a linear increase with Ca. The trends observed
in the experiment of Thulasidas et al. (1995), for increasing
Ca, are a decrease of DB and an increase of V and Z. Thus,
from the present simulations only cases D, E, F, G and H
obey this experimental trend for V and Z. We relate these
findings to the ratio between bubble length and channel
width. For cases A, B and C we have LB/W < 1.1, while
for cases D, E, F, G and H and in the experiment of Thul-
asidas et al. (1995) we have LB/W > 1.1. Our results there-
fore suggest that bubble-train flow with ‘‘short’’ and
‘‘long’’ bubbles show some different behaviour and the crit-
ical value separating both regimes is about LB/W � 1.1.
We note that for cases D, E, F, G and H the bubble diam-
eter DB is almost independent of Ca whereas the experi-
ments of Thulasidas et al. (1995) show a decrease of DB

for increasing values of Ca. For very long bubbles one
may expect that for a given value of the capillary number
the thickness of the liquid film and therefore DB should
become almost independent of the bubble length. However,
in the present simulations the bubbles are rather short and
the increase of Ca is accompanied by an increase of the
bubble length. So we expect a relation DB = DB(Ca,LB)
instead of DB = DB(Ca). Therefore, the expected decrease
of DB with increase of Ca for sufficiently long bubbles
may, in the present simulations, be counteracted by an
increase of DB with increasing bubble length for a given
value of Ca.

2.4. Bubble shape and velocity field

Fig. 5 shows a visualisation of the computed bubble
shape and flow field for cases A2, E and H. To allow for
a good visualisation, the results are shown for each case
for an instant in time when the bubble tip is almost at
the top of the computational domain. In all simulations
the bubble is axisymmetric, i.e. its cross-section at any axial
position is circular. It is therefore sufficient to display only
the left half of the steady bubble shape. Similar visualisa-
tions for cases C and G are displayed in Wörner et al.
(2005a,b). Fig. 5 also shows the velocity field in the vertical
axial mid-plane for the three cases. In the left half of the
figure the velocity field is shown in the fixed frame of refer-
ence, while in the right half it is displayed in the frame of
reference moving with the bubble (i.e. the bubble velocity
is subtracted from the vertical velocity component). In
the fixed frame of reference it can be seen that the velocity
profile in the liquid slug has the form of a parabola and is
similar for all three cases. In the region where the liquid
film is very thin the liquid velocity is almost zero. In the
frame of reference moving with the bubble the flow inside
the bubble can be analysed. We find that there is one big
vortex which occupies almost the complete bubble. In the
rear part of the bubble, however, the velocity is almost zero
in the moving frame of reference. For the flow in the liquid,
the blank regions in the right half of the figures indicate
that part of the liquid slug that is moving with the velocity
of the bubble.
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3. Numerical evaluation of residence time distribution

3.1. Tracking of mass-less particles

We now describe our procedure to evaluate the RTD
from the DNS data and start by presenting the method
for the reconstruction of the tracer paths. In this context
we introduce the following definitions. Let xp,j be the posi-
tion vector of particle j in the fixed frame of reference and
let v(x, t) be the velocity field in this frame of reference.
Then, the time variation of the position of an infinitesimal
small mass-less particle in the fixed frame of reference is
given by

dxp;j

dt
¼ vðxp;jðtÞ; tÞ ð2Þ

Thus, if the particle position at time tn is known, the posi-
tion at time tn+1 = tn + Dtn is given by

xp;jðtnþ1Þ � xnþ1
p;j ¼ xn

p;j þ
Z tnþ1

tn
vðxp;jðtÞ; tÞdt ð3Þ

Using an explicit first-order Euler forward integration pro-
cedure, one can approximate the above formula as

xnþ1
p;j ¼ xn

p;j þ Dtn � vðxn
p;j; t

nÞ ð4Þ

The computation of the new position of the tracer particle
requires therefore knowledge of the fluid velocity at the ac-
tual position of the particle. For the case of bubble-train
flow the phases are in relative motion, so that the velocity
field in the fixed frame of reference changes in time. How-
ever, for periodic fully developed bubble-train flow the
bubbles move with constant speed UB = (0,UB,0)T and a
steady flow is recovered in the referential linked to the cen-
tre of mass of the bubble. Let zp,j be the position vector of
particle j in the frame of reference moving with the bubble
and let w(z) be the steady velocity field in this frame of ref-
erence. Then, the position vector in the moving frame of
reference and the one in the fixed frame of reference are re-
lated by

z ¼ x� ðt � t0ÞUB ð5Þ
Here, t0 is the time for which the two frames of reference
coincide. The velocity fields in the moving frame of refer-
ence and in the fixed frame of reference are related by

wðzÞ ¼ vðx; tÞ �UB ð6Þ
Thus, in a discrete representation in time and with t0 = 0
we obtain from the last two equations

zn
p;j ¼ xn

p;j � tnUB ð7Þ

and

vðxn
p;j; t

nÞ ¼ wðzn
p;jÞ þUB ð8Þ

Inserting Eq. (8) into Eq. (4) yields

xnþ1
p;j ¼ xn

p;j þ Dtn � ðwðzn
p;jÞ þUBÞ ð9Þ

Eqs. (9) and (7) allow us to compute the particle path in the
fixed frame of reference from knowing the steady velocity
field in the moving frame of reference.

Our DNS computer code uses a regular rectilinear stag-
gered grid, where the components of the velocity vector are
defined at the centre of those faces of a mesh cell that
are normal to the respective co-ordinate direction. To
determine the velocity at the particle position we per-
form for each velocity component a linear interpolation,
which involves the eight nearest face-centred values of the



Fig. 5. Bubble shape and velocity field in vertical mid-plane z = 1 mm for fixed frame of reference (left half) and for frame of reference linked to the bubble
(right half) for (a): case A2, t/tref = 0.595, (b): case E, t/tref = 0.44, (c): case H, t/tref = 0.54. In y-direction only every 8th vector is displayed. Note that the
values at the axes correspond to x/Lref any y/Lref.
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respective velocity component. The time step width Dtn for
the forward Euler step is determined so that the Courant
number, based on the local particle velocity, takes a con-
stant value (here this value is 0.1).

3.2. Initialising the particle positions

Up to now we have discussed only the problem of find-
ing the position of a particle at a certain moment of time
assuming that its position at a previous time step is known.
In order to compute the RTD we must define the initial
positions where the particles are released into the flow.
Additionally, we have to define a criterion to decide when
a particle has left the domain. Thus, we have to discuss the
methods for introducing the numerical tracer and for
‘‘measuring’’ it.

3.2.1. Single phase flow
Levenspiel and Turner (1970) and Levenspiel et al.

(1970) point out that there exist two different ways of intro-
ducing and measuring tracer. These are the flux introduc-
tion and planar introduction and the flux measurement
and planar measurement, respectively. In the flux introduc-
tion method the amount of tracer introduced within the
cross-section of a duct is proportional to the local velocity
within this cross-section. Thus, more tracer particles are
released in the centre of the duct and less close to the walls,
where the velocity is low. Accordingly, the principle of the
flux measurement method is to catch all the exit fluid by a
‘‘mixing cup measurement’’. The flux introduction and flux
measurement are thus related to the volumetric flow rate
entering and leaving the duct within a certain time interval.
In contrast, the planar introduction and planar measure-
ment do not rely on a time interval but on a certain instant
in time. Therefore, in the planar introduction the tracer is
evenly distributed across the cross-section of the duct while
the planar measurement detects the instantaneous tracer
concentration within the cross-section. The various combi-
nations of the input-output methods give different curves.
For reactor purposes, the flux introduction – flux measure-
ment method (flux–flux) is appropriate and gives the
proper RTD curve denoted as E. The flux-planar and
planar-flux methods both yield the curve E* while the pla-
nar-planar method yields E**.

For comparing different reactors it is useful to introduce
an RTD curve Eh � sE, which is measured in terms of the
mean residence time h � t/s (Levenspiel et al., 1970). Here,
s is the mean hydrodynamic residence time, which is
defined as the ratio between reactor volume and volumetric
flow rate. Similarly, one can define E�h � sE� and E��h �
sE��. For laminar single-phase flow between two parallel
plates, the different curves can be transformed by the rela-
tionship (Levenspiel, 1979)

E��h ¼ hE�h ¼ h2Eh ¼
0 for h < hmin ¼ 2=3

1
3h 1� 2

3h

� ��1
2 for h P hmin ¼ 2=3

(

ð10Þ

Note that the mean value of Eh is identical to s, while the
mean values of E�h and E��h are 1.

The flux–flux method is suitable for a CFD method
where the RTD is computed by solving a convection–diffu-
sion equation for the tracer concentration. For a particle
method the realisation of the flux–flux method is not
straight forward. Therefore, in the present approach we
test two procedures. In the first one, which corresponds
to the planar introduction, it is essential that the particles
are uniformly distributed in the inlet plane. This is ensured
by specifying a certain number of particles per reference
length, nLref

, which is an input parameter of our method.
The distance between neighbouring particles in each co-
ordinate direction is therefore Lref=nLref

. For a cross-section
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of size Lref · Lref then N p ¼ nLref
� nLref

particles are
released in the inlet plane, e.g. at y = 0. The trajectories
of all particles are then computed and for each particle
the time needed to reach the outlet plane is stored. By clas-
sifying the travel time of all particles into certain time inter-
vals of width Dtclass a histogram is produced. This
histogram is normalised by Np Æ Dtclass. By this procedure
we obtain a curve which we denote EI. The second method
aims to reproduce the flux introduction and is similar to the
first method. However, the residence time of any particle is
weighted by the ratio between the local axial velocity at the
initial position of the particle and the mean axial velocity in
the inlet cross-section. We denote the resulting curve as EII.

To test the methods we evaluated the curves Eh,I and
Eh,II from DNS data of laminar single-phase flow in a
plane channel. The results are shown in Fig. 6 for
Dhclass = 0.047 (stair-type curves) in double-logarithmic
scale and are compared to the analytical results for Eh,
E�h and E��h as given by Eq. (10). We see that Eh,I agrees with
E�h, while Eh,II agrees with Eh and can thus be considered as
approximation of the real RTD curve. We also computed
the laminar single phase flow in a straight duct with square
cross-section and investigated the influence of nLref

(Wörner
et al., 2005a). We found that the mean value of Eh,I is 2.87
for nLref

¼ 48, is 3.47 for nLref
¼ 96, and is 4.13 for

nLref
¼ 192. These values are clearly larger than the mean

hydraulic residence time which corresponds to a mean
value of 1. The increase of the mean value of Eh,I with
increasing number of particles suggests that the mean value
will indeed go to infinity for large values of nLref

as it should
for laminar flow.

3.2.2. Two-phase flow

While the particle introduction at the inlet cross-section
described above is reasonable to determine the E curve for
single-phase flow, it can not be used for bubble-train flow.
The reason is that releasing particles at a certain instant in
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Fig. 6. Comparison of RTD curves evaluated by method I and method II
with analytical RTD curves for laminar single-phase flow in a plane
channel.
time in a cross-section fully occupied by liquid (i.e. a cross-
section within the liquid slug) will not be a representative
particle subset for the liquid phase. By such a procedure
the contributions of the liquid film flow and the corner flow
would be missed. Therefore, with exception of two-phase
flows which do not show any axial variation of the cross-
sectional void distribution (i.e. stratified flow and annular
flow), the concept of the particle introduction must be
extended.

In this paper we propose an extension of the planar
introduction concept from single-phase flow to two-phase
flow, namely a volumetric introduction. In this volumetric
introduction, particles are initially distributed in the entire
liquid phase within the unit cell and not only in the inlet
cross-section. To have a representative sample of particles
we adopt the following procedure. The normalisation used
in TURBIT-VOF requires Lz = Lref, so that the size of the
computational domain is Lx · Luc · Lref and its volume is
LxLucLref. Within this domain in total nLref

ðLx=LrefÞ � nLref

ðLuc=LrefÞ � nLref
uniformly distributed virtual particles are

initialised. Released are, however, only particles which
are located inside mesh cells that are entirely filled with
liquid (i.e. those mesh cells where f = 1). Thus, mesh cells
which contain both liquid and gas are presently ignored.
The number of particles for which trajectories are com-
puted is thus approximately

Np ¼ ð1� eÞn3
Lref

LxLuc

L2
ref

ð11Þ

In our DNS simulations the flow is spatially periodic
and the periodicity length is equal to the length of the flow
unit cell Luc. It is therefore reasonable to take the required
travelling distance of any particle to be a multiple of the
length of the flow unit cell

Ltravel ¼ nucLuc ð12Þ
Here, nuc is a positive integer. In this paper we only con-
sider the case nuc = 1. Similar to the procedure for single-
phase flows described above, we realised two methods for
evaluation of the RTD. In the first method, yielding EI,
the travel times of all particles are again equally weighted.
In the second method, yielding EII, the travelling time of
any particle is weighted by the ratio between the local axial
liquid velocity at the initial position of the particle and the
mean liquid axial velocity within the unit cell.

4. Results for the RTD of bubble-train flow

In this section we give results for the RTD curve of the
liquid phase in bubble-train flow and only present results
for method EII which should correspond to the real RTD
with flux introduction and flux measurement. RTD curves
obtained by method EI are given in Wörner et al. (2005a),
where they are denoted as V–RTD. In that paper we
compared, as a first test, the V–RTD curves obtained from
the DNS data of cases A2 and A3, which differ only by the
number of grid cells (483 and 643, respectively). For this
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comparison we used nLref
¼ 64 and found that the differences

of the curves are very small (see Fig. 3 in Wörner et al.,
2005a). This is also an indication that the linear interpolation
of the discrete velocity field that is used to obtain the particle
velocity is sufficiently accurate. In Fig. 7 we show the RTD
curve (method EII) for case A2 for three different values of
nLref

. While the curves are very similar, the one for nLref
¼

96 is clearly the smoothest, especially for larger values of t.
We found that, in general, the shape of the RTD is more
sensitive to the choice of Dtclass than to that of nLref

. While
small values of Dtclass may result in quite different values of
E for neighbouring classes, larger values of Dtclass lead to
smoother curves but have a coarser resolution. Here, we
use for Figs. 7 and 8 the value Dtclass/tref = 0.1.

The dashed vertical line in Fig. 7 is the bubble break-
through time tB � Luc/UB. This is the time the bubble needs
to move an axial distance equivalent to Luc. From Fig. 7 we
see that no fluid particles are moving faster than the bub-
ble, a result that is to be expected. However, most of the
fluid particles have a residence time that is only slightly lar-
ger than tB. These fluid particles belong to the liquid slug
region behind the bubble, which is moving almost with
the bubble velocity, as indicated by the velocity profiles
in the right half of Fig. 5. The long tails in the RTD on
the other hand correspond to the flow in the liquid film
which is almost stagnant (see velocity profiles in the left
half of Fig. 5).

The inset graphics in Fig. 7 shows the RTD for nLref
¼ 96

in semi-logarithmic representation. The almost constant
slope indicates that the curve may well be approximated
by an exponential relationship. This and the above discus-
sion for the bubble breakthrough time suggest that the
RTD curve in Fig. 7 may be approximated by a compart-
ment model for single-phase flow which consists of two
‘‘tanks’’ in series. The first tank is a plug flow reactor
and the second tank is a continuous stirred tank reactor
which is perfectly mixed (see Fig. 12.1 in Levenspiel,
1999). This concept has already been adopted by Salman
et al. (2004) to develop an analytical model for predicting
axial mixing during Taylor flow in micro-channels at high
Bodenstein numbers. The RTD of this compartment model
is given by Levenspiel (1999)

E ¼
0 for t < V PFR=Q

Q
V CSTR

exp � Q
V CSTR

� t þ V PFR

V CSTR

� �
for t P V PFR=Q

(

ð13Þ
where Q is the volumetric flow rate of the single-phase flow
and VPFR and VCSTR are the volumes of the plug flow reac-
tor and the continuous stirred tank reactor, respectively.
The ratio VPFR/Q defines the ‘‘delay time’’ necessary to
cross the plug flow reactor. In the case of bubble-train flow
this delay time is given by the bubble breakthrough time.
We therefore replace in Eq. (13) expression VPFR/Q by
tB = Luc/UB. The pre-factor Q/VCSTR in Eq. (13) is associ-
ated with the continuous stirred tank reactor, since it is just
the inverse of the mean hydrodynamic residence time of the
CSTR. For our bubble-train flow, the CSTR corresponds
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to the liquid slug region, which is well mixed because of the
fluids re-circulating motion (Thulasidas et al., 1997). The
liquid slug is moving with the total superficial velocity J.
Considering the length of a unit cell, the mean residence
time of the liquid slug is therefore given by Luc/J. Replac-
ing in Eq. (1) Q/VCSTR by J/Luc yields the following model:

EJ ¼
0 for t < Luc=U B

J
Luc

exp J
Luc

Luc

UB
� t

� �h i
for t P Luc=UB

(
ð14Þ

A variant of the model is obtained when the total superfi-
cial velocity J in Eq. (14) is replaced by the mean liquid
velocity UL:

EUL
¼

0 for t < Luc=U B

UL

Luc
exp UL

Luc

Luc

UB
� t

� �h i
for t P Luc=U B

(
ð15Þ

We note that the above models differ from the analytical
model of Salman et al. (2004) in so far as the latter authors
approximate VPFR/Q by LB/UB and Q / VCSTR by UBAfilm/
Vslug, where Afilm is the cross-sectional area of the liquid
film and Vslug is the volume of the liquid slug. This model,
subsequently called Ecirc, was developed for circular chan-
nels, where the film thickness is uniform and Afilm can be
directly computed from correlations that relate the liquid
film thickness to the capillary number. For non-circular
channels, however, the film thickness is not uniform and
in square channels, for example, there exists considerable
corner flow. Nevertheless, for comparison we also present
results for model Ecirc, where we use the approximations
Afilm � W 2 � pD2

B=4 and Vslug �W2 (Luc � LB).
In Fig. 8 we compare the models EJ, EUL

and Ecirc with
the evaluated RTD curves (method EII) for case E and H.
In this figure the RTD data are represented by the shaded
area and are displayed as linear plot and in the inset graph-
ics as semi-logarithmic plot. In the semi-logarithmic plots
one can recognise that for t/tref > 4 the RTD changes its
slope. The steeper slope for values t/tref < 4 is better fitted
by model EJ, whereas the flatter slope for times t/tref > 4
is better approximated by model EUL

. This behaviour is
reasonable because residence times t/tref < 4 correspond
to virtual particles in the liquid slug, which is moving with
velocity J, while residence times t/tref > 4 correspond to the
flow in the four corners where on average the liquid does
not move with the total superficial velocity J but with the
lower mean liquid velocity UL or the even lower liquid
superficial velocity JL � (1 � e)UL. The residence time dis-
tribution predicted by the model of Salman et al. (2004) for
circular channels, Ecirc, is too narrow and is not a good
approximation of the RTD for square channels. This poor
performance of model Ecirc for square channels may hold
at least for capillary numbers Ca > 0.04, where the bubble
is axisymmetric (Thulasidas et al., 1995) and considerable
corner flow exists.

While model EJ can be considered to be already a rea-
sonable approximation for the liquid phase residence time
distribution of bubble-train flow in a square channel, the
different slopes for small and large times suggest that the
model may be further improved by a three tank compart-
ment model. The first tank is, as before, the plug flow reac-
tor which is in series with two parallel continuous stirred
tank reactors. One CSTR corresponds, as before, to the
liquid slug, while the second corresponds to the liquid cor-
ner flow. The RTD of this refined compartment model
obeys in a semi-logarithmic representation a superposition
of two slopes (see Fig. 12.1 in Levenspiel, 1999), as it is
observed in Fig. 8.

5. Conclusions and outlook

In this paper we presented an original method for eval-
uating the liquid phase residence time distribution of bub-
ble-train flow using data from direct numerical simulations.
The method is a particle method and relies on the uniform
introduction of virtual particles in the volume occupied by
the liquid phase within a single flow unit cell. The residence
time distribution is obtained by statistical evaluation of the
time needed by virtual particles to travel an axial distance
equivalent to the length of the unit cell, and by an appro-
priate weighting procedure which takes into account the
axial velocity at the particles initial position. Residence
time curves have been evaluated from DNS data of bub-
ble-train flow in a square mini-channel for different lengths
of the flow unit cell, where the capillary number is in the
range 0.2–0.25. The RTD curves obtained can well be fitted
by a simple exponential relationship, which has been devel-
oped on the basis of a compartment model consisting of
two tanks in series, the first tank being a plug flow reactor
and the second being a continuous stirred tank reactor.
This model may also be applicable for bubble-train flow
in channels with circular cross-section, where, unlike in
channels with rectangular cross-section, no corner flow
exists and for which the usefulness of a similar model (Sal-
man et al., 2004) has already been demonstrated. For chan-
nels with square or rectangular cross-section an extension
of the basic model EJ is proposed, which may allow for tak-
ing into account corner flow in more detail. This topic will
be addressed in future. Also the influence of the capillary
number on the residence time distribution and model per-
formance will be investigated.

Up to now we have considered only the RTD for a sin-
gle unit cell. Unfortunately, we can not compare our RTD
model with experimental data, because measurements of
the RTD for a single unit cell are not available. In practice,
a duct with bubble-train flow will contain tens or hundreds
of unit cells. We will therefore apply our method to multi-
ple lengths of the unit cell (nuc = 2,3, . . .) and determine the
respective RTD curves. In particular, it will be interesting
to check if the RTD for an arbitrary number of nuc can
be obtained by convolution of the RTD for a single flow
unit cell (nuc = 1). In this case, the developed model EJ will
be very useful since the determination of the RTD of bub-
ble-train flow will require only information about the total
superficial velocity and the bubble velocity. Then, it will
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also be possible to validate the model by comparison with
measured RTD curves (e.g. Thulasidas et al., 1999; Gün-
ther et al., 2004a; Trachsel et al., 2005).

An interesting result of the direct numerical simulations
of bubble-train flow in a square mini-channel for various
values of the unit cell length are the different trends
observed for the dependence of the bubble diameter, the
ratio of bubble velocity to total superficial velocity and of
the non-dimensional relative bubble velocity on the capil-
lary number for ‘‘short’’ and ‘‘long’’ bubbles. The present
results suggest that a criterion for the transition between
both regimes may be given by a critical ratio of bubble
length to channel width of about 1.1. To the authors’
knowledge, this topic has not been investigated up to
now and deserves further studies.
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gas–liquid–solid microstructured reactors: contacting principles and
applications. Ind. Eng. Chem. Res. 44, 9750–9769.

Kreutzer, M.T., Bakker, J.J.W., Kapteijn, F., Moulijn, J.A., Verheijen,
P.J.T., 2005a. Scaling-up multiphase monolith reactors: linking resi-
dence time distribution and feed maldistribution. Ind. Eng. Chem. Res.
44, 4898–4913.

Kreutzer, M.T., Kapteijn, F., Moulijn, J.A., Ebrahimi, S., Kleerebezem,
R., van Loosdrecht, M.C.M., 2005b. Monoliths as biocatalytic
reactors: smart gas–liquid contacting for process intensification. Ind.
Eng. Chem. Res. 44, 9646–9652.

Levenspiel, O., 1979. The Chemical Reactor Omnibook. OSU Book Stores
Inc., Corvallis, OR.

Levenspiel, O., 1999. Chemical Reaction Engineering, third ed. Wiley,
New York.

Levenspiel, O., Turner, J.C.R., 1970. The interpretation of residence-time
experiments. Chem. Eng. Sci. 25, 1605–1609.

Levenspiel, O., Lai, B.W., Chatlynne, C.Y., 1970. Tracer curves and the
residence-time distribution. Chem. Eng. Sci. 25, 1611–1613.

Nauman, E.B., 1981. Residence time distributions and micromixing.
Chem. Eng. Commun. 8, 53–131.

Patrick Jr., R.H., Klindera, T., Crynes, L.L., Cerro, R.L., Abraham,
M.A., 1995. Residence time distribution in three-phase monolith
reactor. AIChE J. 41, 649–657.
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